LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - **CHEMISTRY**

SIXTH SEMESTER - APRIL 2013

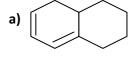
CH 6609/CH 6603 - SYNTHETICS ORGANIC CHEMISTRY AND SPECTROSCOPY

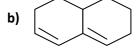
Date: 03/05/2013 Dept. No. Max.: 100 Marks
Time: 1:00 - 4:00

PART A

Answer All questions

 $10 \times 2 = 20$


- 1. State the guiding principles in choosing alternate synthetic routes.
- 2. What are activating groups? Explain it with an example.
- 3. Complete the following reactions

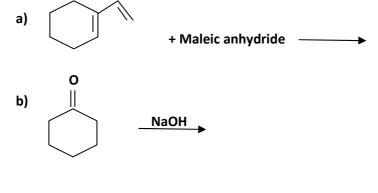

i)
$$C_6H_5$$
-CH=CH - C - C_6H_5 Pt

EtOAc

ii)
$$CH_3 - CH_2 - C \equiv C - CH_2 - CH_3$$
 \longrightarrow

- 4. What is Wolf Kishner reduction?
- 5. What is the structure of the aldol product from propanal?
- 6. The methylenic protons in ethylacetoacetate are found to be acidic. Why?
- 7. Calculate λ max for the following

- 8. Cis 1,2-dichloro ethene is IR active while trans 1,2 dichloro ethene is IR inactive. Give reason
- 9. What is spin-spin splitting?
- 10. What do you understand by Nitrogen rule?


PART B

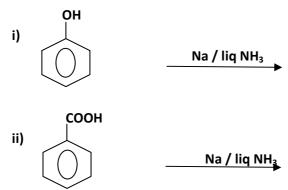
Answer any Eight questions

 $8 \times 5 = 40$

- 11. What are protecting groups? Highlight the use of protecting groups in organic synthesis with an example.
- 12. Write a note on convergent synthesis.
- 13. What do you mean by retro synthetic analysis? Explain.
- 14. Give the mechanism of Clemmensen reduction.
- 15. Discuss the role of Cr (VI) as oxidizing agent.

16. Complete the following reactions

c) C₆H₅CHO + (CH₃CO)₂O CH₃COONa


- 17. How will you distinguish inter and intra molecular hydrogen bonding using IR spectroscopy?
- 18. An organic compound with molecular formula C₈H₆ decolourises bromine water and gives a white precipitate with ammoniacal silver nitrate. Give the probable structure of the compound. Its IR spectrum gives a band at 2150-2200 cm⁻¹ and near 3300 cm⁻¹.
- 19. Explain McLafferty rearrangement with a suitable example.
- 20. What do you mean by shielding and deshielding of a nucleus?
- 21. What is TMS? Why it is chosen as a reference standard in NMR?
- 22. Discuss the mechanism of Diels Alder reaction.

PART C

Answer any four questions

 $4 \times 10 = 40$

- 23. a) Explain Umpolung synthesis. (5)
 - b) How will you convert benzaldehyde to benzyl phenyl ketone using the above method. (5)
- 24. a) Compare the reducing action of LiAlH₄ and NaBH₄ and highlight its significance. (6)
 - b) What is Birch reduction?

- 25. How will you synthesis the following from acetoaceticester
 - a) Cinnamic acid b) Succinic acid c) 2-pentanone d) 4-methyl uracil
 - b) a)How will you distinguish the following using IR spectroscopy: (6)
 - i. Cis and trans cinammic acid
 - ii. CH₃CONH₂ and CH₃CH₂NH₂
 - iii. o-hydroxy benzoic acid and p-hydroxy benzoic acid.
 - c) What are the various types of electronic transitions and give its energy diagram. (4)

26. a) A compound	l with molecular formula $C_9H_{10}O_2$ gave the following spectral data.	(6)
UV	λmax 274 nm	
IR	3031cm ⁻¹ , 2941 cm-1, 1725 cm ⁻¹ and 1060 cm ⁻¹	
NMR	2.35 δ (s, 3H), 3.9 δ (s, 3H) and an unsymmetrical pattern 7.2 δ (4H)	
b) Mention th	ne advantages of ¹³ C NMR spectroscopy in structure determination.	(4)
27. a) An organic compound with molecular formula $C_6H_{12}O$ gives a positive iodoform test. It showed two		
peaks in NM	IR. Find the structural formula	(6)
NMR	2.1δ (s, 3H), 1.1 δ (s, 9H)	
b) Discuss the i	mechanism of aldol condensation.	(4)